If it's not what You are looking for type in the equation solver your own equation and let us solve it.
153=x^2
We move all terms to the left:
153-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+153=0
a = -1; b = 0; c = +153;
Δ = b2-4ac
Δ = 02-4·(-1)·153
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{17}}{2*-1}=\frac{0-6\sqrt{17}}{-2} =-\frac{6\sqrt{17}}{-2} =-\frac{3\sqrt{17}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{17}}{2*-1}=\frac{0+6\sqrt{17}}{-2} =\frac{6\sqrt{17}}{-2} =\frac{3\sqrt{17}}{-1} $
| 18^(x+8)-3=65 | | (2x)(2x+4)=24 | | 3(x+2)+x(x-3)=(x-1)(x-5) | | 15v-18=222 | | 18-39y=-6y^2 | | 3(x+2)+x(x=-3)(x-1)(x-5) | | 15v-9(2)=222 | | -35x=35x^2 | | 6.59-3.1(3.9+13.2x)=-9.3(x-10.8) | | 9x^2+45x+112=0 | | 4(y-6)=y | | 2x^2-16x=-50 | | 29-2x=-5 | | -16x^2+52x+7=9 | | 3e-5+16e=52 | | (7x+20)=90 | | 2x+8.95=23.65 | | x+x/2=20 | | 4(x+2)^2-180=0 | | 6=-3k+9k^2 | | (x−3)(x−2)=0 | | 50-2x=36 | | 7x-12-x=28 | | 0.5x=95 | | (5x+10)+(3x+18)=180 | | 5c^2+12c+6=0 | | 3p-8=36 | | 1+2x/3+4-x/7=8/21 | | p^2+8p-7=0 | | 32+8x=16x | | z^2+3z-7=z | | 11x+2x^2+6=0 |